extension | φ:Q→Out N | d | ρ | Label | ID |
(D7×C22×C4)⋊1C2 = C2×C4⋊D28 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4):1C2 | 448,959 |
(D7×C22×C4)⋊2C2 = C42⋊8D14 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 112 | | (D7xC2^2xC4):2C2 | 448,977 |
(D7×C22×C4)⋊3C2 = D7×C4⋊D4 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 112 | | (D7xC2^2xC4):3C2 | 448,1057 |
(D7×C22×C4)⋊4C2 = C4⋊C4⋊21D14 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 112 | | (D7xC2^2xC4):4C2 | 448,1059 |
(D7×C22×C4)⋊5C2 = C4⋊C4⋊26D14 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 112 | | (D7xC2^2xC4):5C2 | 448,1080 |
(D7×C22×C4)⋊6C2 = C2×C28⋊2D4 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4):6C2 | 448,1253 |
(D7×C22×C4)⋊7C2 = (C2×C28)⋊15D4 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 112 | | (D7xC2^2xC4):7C2 | 448,1281 |
(D7×C22×C4)⋊8C2 = C22×D4×D7 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 112 | | (D7xC2^2xC4):8C2 | 448,1369 |
(D7×C22×C4)⋊9C2 = C22×D4⋊2D7 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4):9C2 | 448,1370 |
(D7×C22×C4)⋊10C2 = C22×Q8⋊2D7 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4):10C2 | 448,1373 |
(D7×C22×C4)⋊11C2 = C2×D7×C4○D4 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 112 | | (D7xC2^2xC4):11C2 | 448,1375 |
(D7×C22×C4)⋊12C2 = (C2×C4)⋊9D28 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4):12C2 | 448,199 |
(D7×C22×C4)⋊13C2 = C24.12D14 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4):13C2 | 448,490 |
(D7×C22×C4)⋊14C2 = C2×C4×D28 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4):14C2 | 448,926 |
(D7×C22×C4)⋊15C2 = C2×D7×C22⋊C4 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 112 | | (D7xC2^2xC4):15C2 | 448,937 |
(D7×C22×C4)⋊16C2 = C2×Dic7⋊4D4 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4):16C2 | 448,938 |
(D7×C22×C4)⋊17C2 = C2×D14.D4 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4):17C2 | 448,941 |
(D7×C22×C4)⋊18C2 = C2×D14⋊D4 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4):18C2 | 448,942 |
(D7×C22×C4)⋊19C2 = C2×D28⋊C4 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4):19C2 | 448,956 |
(D7×C22×C4)⋊20C2 = C2×D14.5D4 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4):20C2 | 448,958 |
(D7×C22×C4)⋊21C2 = C4×D4×D7 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 112 | | (D7xC2^2xC4):21C2 | 448,997 |
(D7×C22×C4)⋊22C2 = C42⋊12D14 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 112 | | (D7xC2^2xC4):22C2 | 448,1000 |
(D7×C22×C4)⋊23C2 = D7×C22.D4 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 112 | | (D7xC2^2xC4):23C2 | 448,1105 |
(D7×C22×C4)⋊24C2 = C4⋊C4⋊28D14 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 112 | | (D7xC2^2xC4):24C2 | 448,1109 |
(D7×C22×C4)⋊25C2 = C2×C4×C7⋊D4 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4):25C2 | 448,1241 |
(D7×C22×C4)⋊26C2 = C22×C4○D28 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4):26C2 | 448,1368 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(D7×C22×C4).1C2 = C4⋊(D14⋊C4) | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4).1C2 | 448,521 |
(D7×C22×C4).2C2 = D14⋊6M4(2) | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 112 | | (D7xC2^2xC4).2C2 | 448,660 |
(D7×C22×C4).3C2 = C2×D7×C4⋊C4 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4).3C2 | 448,954 |
(D7×C22×C4).4C2 = C2×C4⋊C4⋊7D7 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4).4C2 | 448,955 |
(D7×C22×C4).5C2 = C2×D14⋊2Q8 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4).5C2 | 448,962 |
(D7×C22×C4).6C2 = D7×C42⋊C2 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 112 | | (D7xC2^2xC4).6C2 | 448,973 |
(D7×C22×C4).7C2 = D7×C22⋊Q8 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 112 | | (D7xC2^2xC4).7C2 | 448,1079 |
(D7×C22×C4).8C2 = C2×D7×M4(2) | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 112 | | (D7xC2^2xC4).8C2 | 448,1196 |
(D7×C22×C4).9C2 = C2×D14⋊3Q8 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4).9C2 | 448,1266 |
(D7×C22×C4).10C2 = C22×Q8×D7 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4).10C2 | 448,1372 |
(D7×C22×C4).11C2 = D7×C2.C42 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4).11C2 | 448,197 |
(D7×C22×C4).12C2 = C22.58(D4×D7) | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4).12C2 | 448,198 |
(D7×C22×C4).13C2 = D14⋊C42 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4).13C2 | 448,200 |
(D7×C22×C4).14C2 = D14⋊(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4).14C2 | 448,201 |
(D7×C22×C4).15C2 = D14⋊C4⋊C4 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4).15C2 | 448,202 |
(D7×C22×C4).16C2 = D7×C22⋊C8 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 112 | | (D7xC2^2xC4).16C2 | 448,258 |
(D7×C22×C4).17C2 = D14⋊M4(2) | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 112 | | (D7xC2^2xC4).17C2 | 448,260 |
(D7×C22×C4).18C2 = C4×D14⋊C4 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4).18C2 | 448,472 |
(D7×C22×C4).19C2 = D14⋊C4⋊6C4 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4).19C2 | 448,523 |
(D7×C22×C4).20C2 = C2×D14⋊C8 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4).20C2 | 448,642 |
(D7×C22×C4).21C2 = C2×C42⋊D7 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4).21C2 | 448,925 |
(D7×C22×C4).22C2 = C2×D14⋊Q8 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4).22C2 | 448,961 |
(D7×C22×C4).23C2 = C22×C8⋊D7 | φ: C2/C1 → C2 ⊆ Out D7×C22×C4 | 224 | | (D7xC2^2xC4).23C2 | 448,1190 |
(D7×C22×C4).24C2 = D7×C2×C42 | φ: trivial image | 224 | | (D7xC2^2xC4).24C2 | 448,924 |
(D7×C22×C4).25C2 = D7×C22×C8 | φ: trivial image | 224 | | (D7xC2^2xC4).25C2 | 448,1189 |